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Plan for today
• Sequential decision making: MDP, POMDP


• Imitation learning


• Behavioral cloning, Dagger  


• Model-free reinforcement learning


• Value-based: DQN


• Policy-based: REINFORCE, TRPO, PPO


• Value-based+Policy-based: DDPG
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Sequential decision making
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States and actions
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• Need some abstraction 
to start with 


• States: all the info you 
need to make good 
decisions


• Actions: things we can 
do to change states

st+1 ∼ p ( ⋅ |st , at)
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Imitation Learning
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• Imagine you attend a tournament of 
game Go and you have no clue


• But there is a master Shifu will tell 
you what to do, which you just follow
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Imitation Learning -  tabular
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State Action

s(1) a(1)

s(2) a(2)

:

s(n) a(n)

• IL-1.0: Look-up table

• Accumulate a big table of the state-action pair. If see , do .s(i) a(i)
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Imitation Learning - functional
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• Issue of IL-1.0:

• The table could be very long: 

 (# of atoms 
in the universe)


• IL-2.0:

• We can always represent 

knowledge as a table or as a 
function


• Decision policy 



•  can be a linear model 
, where  are pre-

defined feature functions


•  can also be a neural network

2192 ≈ 10108 > 1080

at = fθ(st |𝒟 = {st, at}i)
fθ
at = θTϕ(st) ϕ()

fθ

State Action
s(1) a(1)

s(2) a(2)

:

s(n) a(n)
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Imitation Learning - statistically
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• Issue of IL-2.0

• Shifu’s decisions could be multi-

modal. An averaged decision may 
be meaningless.


• IL-3.0

• Count the frequency of each  

pair

• When , sample all  with 

the weights on the corresponding 
row


• IL-4.0

• For the same reason, i.e., curse of 

dimension, we may use a statistical 
function to approximate the table


• Decision policy 

(s, a)

st = s(i) a(i)

at ∼ πθ( ⋅ |st , 𝒟 = {st, at}i)

a(1) ... a(m)

s(1) 4 ... 50

s(2) 10 ... 2

:

s(n) 0 ... 1
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Imitation Learning/Behavioral Cloning
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• Divide data into training 
and testing sets 


• Take collected “data” as 
the expert


• Train a model with a 
loss function 


• Make decision


at ∼ πθ( ⋅ |st , 𝒟 = {st, at}i)

               
Modeling 

min
θ

∑N
i L(ai, πθ(st))

          
Action 

 at ∼ πθ( ⋅ |st)

Sensing 
𝒟 = {st, at}i

Does it work? 


Yes!training set

testing set
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Case study 1: Nvidia Autonomous Car (2016)

10https://developer.nvidia.com/blog/deep-learning-self-driving-cars/

https://www.youtube.com/watch?v=qhUvQiKec2U
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Case study 1: Nvidia Autonomous Car (2016)

11https://developer.nvidia.com/blog/deep-learning-self-driving-cars/
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Case study 1: Nvidia Autonomous Car (2016)

12https://developer.nvidia.com/blog/deep-learning-self-driving-cars/
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Case study 2: AlphaGo (2016)
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SL: Supervised learning

Silver, D., Huang, A., Maddison, C. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016).



Ding Zhao | CMU

Imitation Learning - DAgger
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• Issue of IL-4.0

• Does it always work -  NO

• Lack of enough data to fully 

train  

• IL-5.0: Data Aggregation (DAgger)

• Train  with labelled 

data  

• Try it out and get a new data 

set  

• Ask Shifu to relabel them:

  

•  Retrain 

πθ(at |st)

πθ(0)(at |st)
𝒟(0) = {st, at}1:N0

�̃�(1) = {st, ãt}N0+1:N1

𝒟(1) ← �̃�(1)

πθ(1) ← 𝒟(0) ∪ 𝒟(1)

a(1) ... a(m)

s(1) 4 ... 50

s(2) 10 ... 2

:

s(n) 0 ... 1

𝒟(0) → πθ(0)

→ �̃�(1) → 𝒟(1)

→ 𝒟(0) ∪ 𝒟(1) → πθ(1)

πππ
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Imitation Learning - Issues

15
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𝒟(0) → πθ(0)

→ �̃�(1) → 𝒟(1)

→ 𝒟(0) ∪ 𝒟(1) → πθ(1)

Drunk

πππ

• Issue of IL-5.0

• Shifu may make mistakes, e.g., 

normal human drivers, could be 
imperfect, e.g. road raging, 
panic in a collision, sleepy


• Too expensive

• 3,000 miles to train Nvidia 

autonomous vehicles

•  20,000,000 miles of testing 

on the public road by Waymo

• Some experiments are safety 

critical, e.g. robotics, healthcare
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Imitation Learning - Issues
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20 million miles and counting…

“Ford Engineers Are Falling Asleep While 
Monitoring Self-Driving Cars”, The Drive, 2017

“Self-driving Uber kills Arizona woman in first fatal crash involving pedestrian”, Guardian, 2018

“Uber's self-driving operator charged over fatal crash”, BBC, 2018

Forbes, January 2020

https://www.youtube.com/watch?v=RASBcc4yOOo
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Imitation Learning - Issues
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• Issue of IL-5.0

• Shifu may make mistakes, e.g., normal 

human drivers, could be imperfect, e.g. 
road raging, panic in a collision, sleepy


• Too expensive

• 3,000 miles to train Nvidia 

autonomous vehicles

•  20,000,000 miles of testing on the 

public road by Waymo

• Some experiments are safety critical, 

e.g. robotics, healthcare
𝒟(0) → πθ(0)

→ �̃�(1) → 𝒟(1)

→ 𝒟(0) ∪ 𝒟(1) → πθ(1)

Drunk

πππ

• Instead of imitating, we may just need 
to know the goal and find better 
methods with trial-and-error - 
Reinforcement learning



Ding Zhao | CMU

Reinforcement learning
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Modeling 

min
θ

∑N
i L(ai, πθ(st))

          
Action 

 at ∼ πθ( ⋅ |st)

Sensing 
𝒟 = {st, at}i

Environment
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Plan for today
• Sequential decision making: MDP, POMDP


• Imitation learning


• Behavioral cloning, Dagger  


• Model-free reinforcement learning


• Value-based: DQN


• Policy-based: REINFORCE, TRPO, PPO


• Value-based+Policy-based: DDPG

19



Ding Zhao | CMU

Reinforcement Learning -  Reward function
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rrr
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πππ
• Instead of asking for 

demos, we only request a 
single digit number  to 
indicate the level of 
happiness - reward.








rt

st+1 ∼ p ( ⋅ |st , at)
at ∼ π ( ⋅ |st)
rt ∼ r ( ⋅ |st , at)Markov Decision Process

The most widely used RL structure is MDP. 



Ding Zhao | CMU

Markov Decision Process
• Mathematical formulation of the RL problem

• Markov property: Current state completely  

characterizes the state of the world


• Defined by:  

•  : set of possible states

•  : set of possible actions

•  : reward function

•  : dynamics function


• A trajectory (rollout) is a sequence of states and actions  
 is randomly sampled from the start-state distribution 

(𝒮, 𝒜, r, p)
𝒮
𝒜
r
p

τ = (s0, a0, s1, a1, . . . )
s0 s0 ∼ ρ0( ⋅ )

21







st+1 ∼ p ( ⋅ |st , at)
at ∼ π ( ⋅ |st)
rt ∼ r ( ⋅ |st , at)
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Return
• In a sequential decision making, the accumulated episodic is called return


• There are two common ways to define return. In the practice, people may mix 
these two up


• Finite-horizon undiscounted return 
                                           


• Infinite-horizon discounted return 
                                           
 : discount factor


• Goal of MDP: given , ,  or , we want  

                                

R(τ) = ∑T
t=0 rt

R(τ) = ∑∞
t=0 γtrt

γ

(𝒮, 𝒜, r, p) ρ0( ⋅ ) T γ

π* = arg maxπ Eτ∼π [R (τ)]
22
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Sequential decision making

23
What are the , , , ?(𝒮, 𝒜, r, p) ρ0( ⋅ ) R(τ) π*
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Q-value function

24

• For sequential decision making, we care the total reward in the sequence

• Q-value function with infinite-horizon definition  

           


• Calculate backward:  
              ,     ,    , ...


                           


• Optimal policy  optimize , or Bellman Equation (dynamic programming)


Qπ
t = Qπ(st, at) = 𝔼[R(τ) |st, at] = 𝔼[∑∞

k=0 γkr(st+k, at+k) |st, at]

Q3 = r(s3) Q2 = r(s2, a2) + γQ3 Q1 = r(s1, a1) + γQ2

Qπ(st, at) = 𝔼at+1∼π[r(st, at) + γQπ(st+1, at+1)]
π* Qπ(st, at)

Qπ*(st, at) = 𝔼[r(st, at) + γ maxat+1
Qπ*(st+1, at+1)]

“Bellman backup” or just “backup” or “target" comes up quite frequently in the RL literature, which is the 
right-hand side of the Bellman equation: the reward-plus-next-value.
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Two ways to compute the optimal policy
• Parameterize the policy


• Gradient ascent


• 


•  


• , 


• 


• Parameterize the value function 


• Dynamic programming


• 


• 


• , 


• With the“greedy method”, i.e.,  
 of  then can influence .


• , , 

J(θ, 𝒟πθ
) = 𝔼 [∑∞

t=0 γtrt |πθ]
θ* = arg maxθ J(θ, 𝒟πθ

)

θi+1 = θi + α∇θJ(θ) |θ=θi
θi → θ*

at ∼ πθi
( ⋅ |st)

Q

Qπ*
ϕ*(st, at) = 𝔼[r(st, at) + γ maxat+1

Qπ*
ϕ*(st+1, at+1)]

eπ
ϕ = Qπ

ϕ(st, at) − 𝔼[r(st, at) + γ maxat+1
Qπ

ϕ(st+1, at+1)]

L(ϕ, π) = 𝔼 [ 1
2 eπ

ϕ
2] (ϕ*, π*) = arg minϕ,π L(ϕ, π)

π(at |st) = maxa Qϕ(st, a)
ϕ Q π

ϕi+1 = ϕi − α∇ϕL(ϕ) |ϕ=ϕi
ϕi → ϕ* πi → π*

25



Ding Zhao | CMU

DQN-1.0 algorithm
One point iteration


1. Take an action using greedy method 
             

and observe 


2. Calculate Bellman backup 



3. Update Q function 
  

where  is the learning rate 

at = maxa Qϕi
(st, a)

(st, at, st+1, ri)

yt = r(st, at) + γ maxat+1
Qϕi

(st+1, at+1)

ϕ ← ϕ − α∑t (∇ϕQϕ(st, at)) (Qϕ(st, at) − yt)
α

26

Issue of DQN-1.0, the optimization may be 
trapped in a vicious circle:

bad policy -> bad training data -> train a 
even worse policy (a core problem of RL)

Different from IL, training data here is not 
i.i.d.:

• Training data are decided by a policy 

strictly decided by previous training data

•  pairs in a trajectories are 

dependent

Two ways to cut the chain:

=> randomize policy:  -greedy 
=> randomize data: experience replay 

(st, at)

ε

randomize policy: -greedyε

randomize data: 
experience replay
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DQN-2.0 algorithm
Randomize actions

1. Take an action using -greedy method: 

 with probability , 
otherwise, choose a random action 
and observe 


2. Calculate Bellman backup 



3. Update Q function 
  

where  is the learning rate 

ε
at = maxa Qϕi

(st, a) 1 − ε

(st, at, st+1, ri)

yt = r(st, at) + γ maxat+1
Qϕi

(st+1, at+1)

ϕ ← ϕ − α∑t (∇ϕQϕ(st, at)) (Qϕ(st, at) − yt)
α

27

Issue of DQN-1.0, the optimization may be 
trapped in a vicious circle:

bad policy -> bad training data -> train a 
even worse policy (a core problem of RL)

Different from IL, training data here is not 
i.i.d.:

• Training data are decided by a policy 

strictly decided by previous training data

•  pairs in a trajectories are 

dependent

Two ways to cut the chain:

=> randomize policy:  -greedy 
=> randomize data: experience replay 

(st, at)

ε

randomize policy: -greedyε
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DQN-3.0 algorithm
Randomize actions and training data

1. Take the -greedy method:  

 with probability , otherwise, choose a 
random action 
observe a dataset  and add it to  


1. Randomly sample a mini batch from 


2. Calculate Bellman backup for this batch 



1. Iteratively calculate  starting from  
 

3. Update Q function:  
Way 1 direction update:  
Way 2 moving average: , e.g.  

ε
at = maxa Qϕi

(st, a) 1 − ε

{(st, at, st+1, rt)} 𝒟

𝒟

yt = r(st, at) + γ maxat+1
Qϕi

(st+1, at+1)

ϕ ϕi
ϕ ← ϕ − α∑t (∇ϕQϕ(st, at)) (Qϕ(st, at) − yt)

ϕi+1 = ϕ
ϕi+1 = ρϕi + (1 − ρ)ϕ ρ = 0.999

28

Issue of DQN-1.0, the optimization may be 
trapped in a vicious circle:

bad policy -> bad training data -> train a 
even worse policy (a core problem of RL)

Different from IL, training data here is not 
i.i.d.:

• Training data are decided by a policy 

strictly decided by previous training data

•  pairs in a trajectories are 

dependent

Two ways to cut the chain:

=> randomize policy:  -greedy 
=> randomize data: experience replay 

(st, at)

ε

randomize policy: -greedyε

randomize data: 
experience replay

Also called low pass filter/Polyak averaging in literature
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`

29Mnih, V., Kavukcuoglu, K., Silver, D. et al. Human-level control through 
deep reinforcement learning. Nature 518, 529–533 (2015).

Does it work? 


Most of the time!
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Code and performance

30Mnih, V., Kavukcuoglu, K., Silver, D. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).

https://www.youtube.com/watch?v=V1eYniJ0Rnk
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Q-network Architecture
• : neural network with weights 


• Current state: 84x84x4 stack of last 4 frames


• (Preprocessing: RGB->grayscale, avg of two 
consecutive images, downsampling, and cropping)


• Last fully connected (FC) layer has 4-d output (if 4 
actions), corresponding to , , 

, 

Q(s, a; θ) θ

Q(st, a(1)
t ) Q(st, a(2)

t )
Q(st, a(3)

t ) Q(st, a(4)
t )

31
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Two ways to compute the optimal policy
• Parameterize the policy


• Gradient ascent


• 


•  


• , 


• 


• Parameterize the value function 


• Dynamic programming


• 


• 


• , 


• With the“greedy method”, i.e.,  
 of  then can influence .


• , , 

J(θ, 𝒟πθ
) = 𝔼 [∑∞

t=0 γtrt |πθ]
θ* = arg maxθ J(θ, 𝒟πθ

)

θi+1 = θi + α∇θJ(θ) |θ=θi
θi → θ*

at ∼ πθi
( ⋅ |st)

Q

Qπ*
ϕ*(st, at) = 𝔼[r(st, at) + γ maxat+1

Qπ*
ϕ*(st+1, at+1)]

eπ
ϕ = Qπ

ϕ(st, at) − 𝔼[r(st, at) + γ maxat+1
Qπ

ϕ(st+1, at+1)]

L(ϕ, π) = 𝔼 [ 1
2 eπ

ϕ
2] (ϕ*, π*) = arg minϕ,π L(ϕ, π)

π(at |st) = maxa Qϕ(st, a)
ϕ Q π

ϕi+1 = ϕi − α∇ϕL(ϕ) |ϕ=ϕi
ϕi → ϕ* πi → π*

32
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Policy Gradients
• Issue of with DQN algorithms?


• The Q-function can be very complicated!


• Example: active safety function of a car has a very high-dimensional state 
=> hard to learn exact value of every state (driving scenes) - action pair


• But the policy can be much simpler: just brake or release


• Can we learn a policy directly, e.g. finding the best policy from a collection of 
policies?


• We will first learn one of the most widely used algorithms: REINFORCE

33



Ding Zhao | CMU

REINFORCE algorithm - objective function
• Mathematically, we can write:


  

 
 

where  is the reward of a trajectory 

J(θ) = 𝔼τ∼p(τ;θ)[r(τ)]

= ∫τ
r(τ)p(τ; θ)dτ

r(τ) τ = (s0, a0, r0, s1, …)

34
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REINFORCE-1.0
• Expected reward:  


• Now let’s differentiate this:  


• Intractable! Gradient of an expectation is problematic when  depends on 


• However, we can use a nice trick: 


 


• Substitute it back:  


 


which can be estimated with Monte Carlo sampling

J(θ) = 𝔼τ∼p(τ;θ)[r(τ)] = ∫
τ
r(τ)p(τ; θ)dτ

∇θJ(θ) = ∫
τ
r(τ)∇θ p(τ; θ)dτ

p θ

∇θ p(τ; θ) = p(τ; θ)
∇θ p(τ; θ)

p(τ; θ) = p(τ; θ)∇θlog p(τ; θ)

∇θJ(θ) = ∫
τ
(r(τ)∇θlog p(τ; θ))p(τ; θ)dτ = 𝔼τ∼p(τ;θ)[r(τ)∇θlog p(τ; θ)]

35p(τ; θ) = ∏t≥0 p(st+1 |st, at)πθ(at |st)Issue: we may not know 
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REINFORCE-2.0: remove transition probability
• Can we compute those quantities without knowing the transition probabilities?


• We have: 


• Thus: 


• And when differentiating:  


• Doesn’t depend on transition probabilities!


• Therefore when sampling one trajectory , we can estimate  with


 

p(τ; θ) = ∏t≥0 p(st+1 |st, at)πθ(at |st)

log p(τ; θ) = ∑t≥0 log p(st+1 |st, at) + log πθ(at |st)

∇θlog p(τ; θ) = ∑t≥0 ∇θlog πθ(at |st)

τ J(θ)

∇θJ(θ) ≈ ∑t≥0 r(τ)∇θlog πθ(at |st)

36
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Intuition
• Gradient estimator:  


• Interpretation: 

• If  is high, push up the probabilities of the actions seen


• If  is low, push down the probabilities of the actions seen

∇θJ(θ) ≈ ∑t≥0 r(τ)∇θlog πθ(at |st)

r(τ)

r(τ)

37

Issue of REINFORCE-2.0: Might seem simplistic to judge an 
action with the reward of the whole trajectory. It is like a bench 
player is on the court for only 1 min, but is evaluated based on 
the final game result.  
 
Mathematically, this will lead a big variance (ambiguity) in 
evaluation and further decision.
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REINFORCE-3.0: better credit assignment
• Gradient estimator:  


• One idea: use rewards only after the action  is applied


                          


• Even better: Use discount factor  to consider the delayed effects, i.e., give 
higher weights to the reward just after  is applied


                       

∇θJ(θ) ≈ ∑t≥0 r(τ)∇θlog πθ(at |st)

at

∇θJ(θ) ≈ ∑t≥0 (∑t′ ≥t rt′ 
)∇θlog πθ(at |st)

γ
at

∇θJ(θ) ≈ ∑t≥0 (∑t′ ≥t γt′ −trt′ 
)∇θlog πθ(at |st)

38

Issue 1: what if the system has delay - we will discuss it later 
Issue 2: how to decide whether  is high or low rt′ 
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REINFORCE-3.0: add baseline of a reward
• Problem: The raw value of the reward isn’t necessarily meaningful. Ideally, 

assign a positive credit when the reward is relatively high; negative when the 
reward is relatively low. 


• We need a baseline function: 


• Concretely, now estimator is:


                  


• A simple baseline: constant moving average of rewards experienced so far 
from all trajectories


• This version is usually called “Vanilla REINFORCE”

b(st)

∇θJ(θ) ≈ ∑t≥0 (∑t′ ≥t γt′ −trt′ 
− b(st))∇θlog πθ(at |st)

39
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Actor-Critic Algorithm: a even better baseline
• If this action was better than the expected (averaged) value of what we should get 

from that state, then we like it.


• These can be done with the values functions


• action-value function: 


• state-value function: 


• Intuitively, we are happy with an action at state  if  is large. On the 
contrary, we are unhappy with an action if it’s small.


• Using this, we get the estimator: 

Qπ(st, at) = 𝔼π [∑t′ ≥t γt′ −trt′ 
|st, at]

Vπ(st) = 𝔼π [∑t′ ≥t γt′ −trt′ 
|st]

st Qπ(st, at) − Vπ(st)

∇θJ(θ) ≈ ∑t≥0 (Qπ(st, at) − Vπ(st))∇θlog πθ(at |st)

40
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Actor-Critic Algorithm
• Problem: we don’t know  and . Can we learn them?


• Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training 
both an actor (the policy) and a critic (the Q-function).


• The actor decides which action to take, and the critic tells the actor how good its 
action was and how it should adjust


• Can also incorporate Q-learning tricks e.g. experience replay


• Can use data generated by previous policies - more efficient


• Define by the advantage function how much an action was better than expected


 

Q V

Aπ(s, a) = Qπ(s, a) − Vπ(s)

41
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On-policy vs off-policy
• Policy optimization is almost always performed on-policy, which means that each 

update only uses data collected while acting according to the most recent version of the 
policy. The historical data collected with very old policy is not used. They can be used 
with both continuous and discrete states. Using gradient, they converge to a local 
minima of 


• Q-learning, e.g., DQN, is almost always performed off-policy, which means that each 
update can use data collected during the whole training history, regardless of what policy 
the agent was choosing to explore the environment. Therefore, it is more sampling 
efficient. No guarantee of convergence.

J(θ)

42https://jonathan-hui.medium.com/rl-model-based-reinforcement-learning-3c2b6f0aa323

(Lec 8) (Lec 8)
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Plan for today
• Sequential decision making: MDP, POMDP


• Imitation learning


• Behavioral cloning, Dagger  


• Model-free reinforcement learning


• Value-based: DQN


• Policy-based: REINFORCE


• Value-policy-based: Actor-Critic

43



Ding Zhao | CMU

Worth reading
• OpenAI spinning up for Deep RL


• https://spinningup.openai.com/en/latest/index.html


• CS 285 UC Berkeley: Deep Reinforcement Learning


• http://rail.eecs.berkeley.edu/deeprlcourse/

44

https://spinningup.openai.com/en/latest/index.html
http://rail.eecs.berkeley.edu/deeprlcourse/

