Trustworthy AI Autonomy

M2-1: Model-free Deep RL

Carnegie
Mellon
University

Ding Zhao

Assistant Professor

Carnegie Mellon University

2022 @ Ding Zhao

Safe Al Lab @CMU

Plan for today

* Sequential decision making: MDP, POMDP

* |mitation learning
* Behavioral cloning, Dagger
 Model-free reinforcement learning
» Value-based: DQN
* Policy-based: REINFORCE, TRPO, PPO
» Value-based+Policy-based: DDPG

Ding Zhao | CMU

Sequential decision making

MANUAL

/ First Log - Press L to Switch
ALPHAGO 61.4° 209
01 :24:1 2 9.32

+ 0+ Google DeepMind

Challenge Match

LEE SEDOL

01:25:13

Ding Zhao | CMU

States and actions

e Need some abstraction
to start with

() ——()
D / o States: all the info you
@ need to make good

decisions

* Actions: things we can
do to change states

St+1 Np(' s, at)

Ding Zhao | CMU

Imitation Learning

* |magine you attend a tournament of
game Go and you have no clue

 But there is a master Shifu will tell
you what to do, which you just follow

Ding Zhao | CMU

Imitation Learning - tabular
e |[L-1.0: Look-up table

 Accumulate a big table of the state-action pair. If see S(i), do a'?.

Ding Zhao | CMU

Discretized

State

Action

s(1)

all)

s(2)

al)

Imitation Learning - functional

Ding Zhao | CMU

e |ssue of IL-1.0:

* The table could be very long:

2
2197~ 10198 > 10%0 (# of atoms
in the universe)

e |L-2.0:

 We can always represent
knowledge as a table or as a

function
e Decision policy

a, :fe(St\ D = USp Oy i)
» fycan be a linear model

a, = 9T¢(St), where @() are pre-
defined feature functions

» fycan also be a neural network

/

Imitation Learning - statistically

e |ssue of IL-2.0
o Shifu’s decisions could be multi-

modal. An averaged decision may
be meaningless.
e |L-3.0
» Count the frequency of each (s, a)
pair
 When s, = s, sample all a' with
the weights on the corresponding

row
e |L-4.0
 For the same reason, i.e., curse of
dimension, we may use a statistical
function to approximate the table
* Decision policy
a, ~ w8, D = {spa,})

Ding Zhao | CMU

Imitation Learning/Behavioral Cloning

* Divide data into training
and testing sets

Modeling

e Take collected “data” as
the expert

e Train a model with a

Sensing loss function

D= {s,a,}

e Make decision

a~7n)-|s,, D=1{s.a,l.
. testing set - 1S, USp A}

* Does it work?
training set ‘ Yes!

Ding Zhao | CMU

Case study 1: Nvidia Autonomous Car (2016)

==

Ding Zhao | CMU

e

_—
-

s

»>

O
|
[10neurons]

I 100 neurons]

Flatten

|I
\

\
\

\
\ |

3x3 kernel

3x3 kernel

\‘ 5x5 kernel

5x5 kernel

/‘SXS kernel

[Normalization]
I

_—

Output: vehicle control

Fully-connected layer
Fully-connected layer
Fully-connected layer

Convolutional
feature map
64@1x18

Convolutional
feature map
64@3x20

Convolutional
feature map
48@5x22

Convolutional
feature map
36@14x47

Convolutional
feature map
24@31x98

Normalized
input planes
3@66x200

Input planes
3@66x200

Figure 5: CNN architecture. The network has about 27 million connections and

250 thousand parameters.

https://developer.nvidia.com/blog/deep-learning-self-driving-cars/

10

https://www.youtube.com/watch?v=qhUvQiKec2U

Case study 1: Nvidia Autonomous Car (2016)

Recorded

steering

wheel angle _ | Adjust for shift
and rotation

Left camera

> Random shift
and rotation

Center camera
| | >

Right camera

CNN

A

Desired steering command

Network

computed
| steering

command

Back propagation _ Eror
weight adjustment

Figure 3: Training the neural network.

Ding Zhao | CMU

>

\J

Center camera

>

CNN

Network
computed
steering |
command | Drive by wire
>
interface

Figure 4: The trained network is used to generate steering commands from a
single front-facing center camera.

https://developer.nvidia.com/blog/deep-learning-self-driving-cars/

11

Case study 1: Nvidia Autonomous Car (2016)

Time = 249 (sec)

’ Autonomy = 100.0%
Position Precision = 64 8%
Speed Precision = 100.0%
Comfort = B9.6X
Drive mode = Auto
Distonce = 4535 (m)

» Shift and rotate > CNN
Synthesized
image of road as
| ‘ would be seen from
Library of recorded test simulated vehicle Network
routes: videos and time- computed
synchronized steering - steering
commands Update car command
positionand =
orientation
Figure 6: Block-diagram of the drive simulator. Figure 7: Screenshot of the simulator in interactive mode. See text for explanation

of the performance metrics. The green area on the left is unknown because of the
viewpoint transformation. The highlighted wide rectangle below the horizon is the
area which is sent to the CNN.

12

Dlng Zhao ‘ CMU https://developer.nvidia.com/blog/deep-learning-self-driving-cars/

Case study 2: AlphaGo (2016)

'c' ' .

4 Rollout policy SL policy network RL policy network Value network Policy network Value network
. SL: Supervised learning &

" o‘ z

”, p’ P, , pl' Yo 8 pn P (8 |s) Ve (s')

g " S ®

K -

] *

3 &L

Polloy & xent m % : N “.’
i 3 | ‘

| S ~ : :

' o

g ‘ 9

! ! - s s
g 8 Self-play positions —

13

Dlng Zhao ‘ CMU Silver, D., Huang, A., Maddison, C. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484-489 (2016).

Imitation Learning - DAgger

* |ssue of |L-4.0
 Does it always work - NO
* Lack of enough data to fully

train my(q,|s,)
* |L-5.0: Data Aggregation (DAgger)
e Train myo(a,|s,) with labelled
0) —
data 2% = {5, a,} .y,
* [ry it out and get a new data
~ 1 5
set D) = USp Qb N1,
* Ask Shifu to relabel them:
g . g
o Retrain my;) < 20y oW

Ding Zhao | CMU 14

Imitation Learning - Issues

* |ssue of |L-5.0
* Shifu may make mistakes, e.qg.,
normal human drivers, could be
imperfect, e.g. road raging,
panic in a collision, sleepy
 [oO expensive
* 3,000 miles to train Nvidia
autonomous vehicles
e 20,000,000 miles of testing
on the public road by Waymo
* Some experiments are safety
critical, e.g. robotics, healthcare

Ding Zhao | CMU 15

Imitation Learning - Issues

million

October

@ 9 million
August
@® 38 nillion
July
@ 7 million
June
. 6 million
April
@® 5 nillion
February
. & million
November
@ 3 million
May

@ 2 million
October

‘ 1 million
June

“Self-driving Uber kills Arizona woman in first fatal crash involving pedestrian”, Guardian, 2018
“Uber's self-driving operator charged over fatal crash”, BBC, 2018

20 million miles and counting... v

Forbes, January 2020

“Ford Engineers Are Falling Asleep While
Monitoring Self-Driving Cars”, The Drive, 2017F¥

Ding Zhao | CMU

https://www.youtube.com/watch?v=RASBcc4yOOo

Imitation Learning - Issues

e |ssue of [L-5.0
e Shifu may make mistakes, e.g., normal
human drivers, could be imperfect, e.qg.
road raging, panic in a collision, sleepy
* JOO expensive
e 3,000 miles to train Nvidia
autonomous vehicles
« 20,000,000 miles of testing on the
public road by Waymo
 Some experiments are safety critical,
e.g. robotics, healthcare

* [nstead of imitating, we may just need
to know the goal and find better
methods with trial-and-error -
Reinforcement learning

Ding Zhao | CMU 17

Reinforcement learning

Modeling

IIleiIl Ziv L(Cli, 77(9(5;))

Sensing
D= {s,a,}

Environment

Ding Zhao | CMU

18

Plan for today

* Sequential decision making: MDP, POMDP

* |mitation learning
* Behavioral cloning, Dagger
 Model-free reinforcement learning
» Value-based: DQN
* Policy-based: REINFORCE, TRPO, PPO
» Value-based+Policy-based: DDPG

Ding Zhao | CMU

19

Reinforcement Learning - Reward function

@ * |nstead of asking for
demos, we only request a

r single digit number r, to
indicate the level of
happiness - reward.

St+1Np('|Staat)

Agent a, ~ 71'(- \St)

state reward aotlon
S Markov Decision Process

rtNr(-\St,at)

Environment

The most widely used RL structure is MDP.
Ding Zhao | CMU

20

Markov Decision Process

 Mathematical formulation of the RL problem

 Markov property: Current state completely
characterizes the state of the world

» Defined by: (&, A, r,p)
e & : set of possible states
« o/ : set of possible actions
e r:reward function
* p . dynamics function

» A trajectory (rollout) is a sequence of states and actions 7 = (SO, Ay, S1, A1s - -

sy is randomly sampled from the start-state distribution sy ~ py(-)

Ding Zhao | CMU

)

21

Return

* |n a sequential decision making, the accumulated episodic is called return

* There are two common ways to define return. In the practice, people may mix
these two up

 Finite-horizon undiscounted return .
R(t)y=), .1

e |Infinite-horizon discounted return

— OO [
| R(T) T th() y rt
y : discount factor

» Goal of MDP: given (&, <, 1, p), po(-), T or y, we want
r* =argmax_E__ [R (T)]

Ding Zhao | CMU

22

Sequential decision making

’\ Google DeepMind

Challenge Match

ALPHAGO / w7y First Log - Press L to Switch
01:24:12 _

LEE SEDOL

01:25:13)

What are the (&', A, 1, p), po(-), R(z), 7*?
Ding Zhao | CMU

23

Q-value function

* For sequential decision making, we care the total reward in the sequence
e Q-value function with infinite-horizon definition

Q;T — Qﬂ(Sta Clt) — _[R(T) ‘ Sts Clt] — _[ZIZO }/kI"(SH_k, d; k) ‘ Sts Clt]

 Calculate backward:
O;=1(s3), O, =r1(s5,a) +y0;, Q) =r(s;,a) +70,, ..

Q"(spa,) = _atHNﬂ[r(St’ a,) +yQ"(S;1, Ay)]

» Optimal policy 7™ optimize Q"(s,, a,), or Bellman Equation (dynamic programming)

Qﬂ*(StHa yp)]

Q™ (s, a,) = E[r(s,, a,) + y max

|

“Bellman backup” or just “backup” or “target" comes up quite frequently in the RL literature, which is the
right-hand side of the Bellman equation: the reward-plus-next-value.

Ding Zhao | CMU

24

Two ways to compute the optimal policy

 Parameterize the policy

e Gradient ascent

>

® J(H9 @ﬂ:@) —

o0

=07

t”t‘”@

. O* = argmax,J(0, QZ@)

o U, ~ ﬂ.@i() ‘St)

Ding Zhao | CMU

« Parameterize the value function QO

 Dynamic programming

o OFi(spa) = E[r(s,a) + ymax, OF(s, 1, a,)]

. ey = Qs a) — Elr(s, a) + ymax, Op(s.q, a1l

|

. L(¢,m) = E %eggz: (¢*, 7*) = argmin,, , L(¢h,)

» With the“greedy method”, i.e., 7(a,| 5;) = max, Q (s, a)
@ of O then can influence 7.

* ¢i+1 — ¢i — GV¢L(¢) ‘¢=§bi, ¢i — Qb*, T, — ™

25

Modeling

DQN-1.0 algorithm T 0500

SGnsmg} 'ﬁ)
: : : = {5, a,
One point iteration randomize data:

experience replay
— 1. Take an action using greedy method

Environment { "8
d, = max,, qui(st’ Cl) ~ randomize pollcy. e-greedy
and observe (S Q.. S 7-,) Issue of DQN-1.0, the optimization may be
At s S LR trapped in a vicious circle:
bad policy -> bad training data -> train a
2. Calculate Bellman backup even worse policy (a core problem of RL)
— Different from IL, training data here is not
Yt = r(Sf’ at) Ty maxam Q¢i(sf+1’ af+1) .i.d.; ’
: * [raining data are decided by a policy
3. Update Q function strictly decided by previous training data

. O — @ — azt V¢Q¢(St9 at)) (ng(st’ at) — yt> . (s,, a,) pairs in a trajectories are

: . dependent
where a Is the learning rate Two ways to cut the chain:

=> randomize policy: € -greedy
=> randomize data: experience replay
Ding Zhao | CMU 26

DQN-2.0 algorithm

Randomize actions

1. Take an action using £-greedy method:
[a, = max, 0, (s;, a) with probability 1 — ¢,
otherwise, choose a random action
and observe (St, A, S rl-)

2. Calculate Bellman backup
Yy = 1(spa) +ymax, Qi1)

3. Update Q function
- ¢ — ¢ _ azt ()ngQqﬁ(Sta Clt)) <Q¢(St9 at) o yt)

where a Is the learning rate

Ding Zhao | CMU

Modeling
min > L(a;, ms,)

randomize policy: e-greedy

Issue of DQN-1.0, the optimization may be
trapped In a vicious circle:

bad policy -> bad training data -> train a
even worse policy (a core problem of RL)

Different from IL, training data here is not

.1.d.:

* [raining data are decided by a policy
strictly decided by previous training data

» (s, a,) pairs in a trajectories are
dependent
Two ways to cut the chain:
=> randomize policy: € -greedy
=> randomize data: experience replay
27

randomize data:
experience replay

DQN-3.0 algorithm

— Randomize actions and training data
1. Take the £-greedy method:

a, = max, Q, (s, a) with probability 1 — &, otherwise, choose a
random action

observe a dataset {(s,, a,, 5,.1,7,)} and add it to &
___ 1. Randomly sample a mini batch from &

2. Calculate Bellman backup for this batch

Vi =1(spa) +ymax, OQp(S1)

N 1. lteratively calculgte gb starting from gbi
L O — @ — Olzt ZV¢Q¢(St, at)s <Q¢(St, a,) — yt>

3. Update Q function:
Way 1 direction update: ¢, | = ¢

Way 2 moving average: ¢,. | = p¢;, + (1 — p)¢, e.g. p = 0.999
Ding Zhao | CMU

Also called low pass filter/Polyak averaging in literature

Modeling
min 3" Z (@, 7(5))

randomize policy: e-greedy

Issue of DQN-1.0, the optimization may be
trapped In a vicious circle:

bad policy -> bad training data -> train a
even worse policy (a core problem of RL)

Different from IL, training data here is not

.1.d.:

* [raining data are decided by a policy
strictly decided by previous training data

» (s, a,) pairs in a trajectories are
dependent

Two ways to cut the chain:

=> randomize policy: € -greedy

=> randomize data: experience replay

28

Ding Zhao | CMU

Mnih, V., Kavukcuoglu, K., Silver, D. et al. Human-level control through
deep reinforcement learning. Nature 518, 529-533 (2015).

Montezuma's Revenge |

Video Pinball |
Boxing i
Breakout |

Star Gunner |
Robotank |
Atlantis |

Crazy Climber |
Gopher |
Demon Attack |
Name This Game |
Krull |

Assault |

Road Runner |
Kangaroo |
James Bond |
Tennis |

Pong |

Space Invaders |
Beam Rider |
Tutankham |
Kung-Fu Master |
Freeway |

Time Pilot |
Enduro |
Fishing Derby |
Up and Down |
Ice Hockey |
Q*bert |
H.E.R.O. |
Asterix |

Battle Zone |
Wizard of Wor |
Chopper Command |
Centipede |
Bank Heist |
River Raid |
Zaxxon |
Amidar |

Alien |

Venture |
Seaquest |
Double Dunk |
Bowling |

Ms. Pac-Man |
Asteroids |
Frostbite |
Gravitar |
Private Eye |

At human-level or above

Below human-level

Does it work?

Most of the time!

Best linear learner

100

I
200

I
300

))
I I 00 l
400 500 600 1,000 4,500%

Code and performance

model = DQON(env.observation space.shape[0], env.action space.n)
replay buffer = ReplayBuffer(1000)
state = env.reset()
for frame idx in range(l, num frames + 1):
epsilon = epsilon by frame(frame idx)
action = model.act(state, epsilon)
next state, reward, done, = env.step(action)

replay buffer.push(state, action, reward, next state, done)
state = next state

episode reward += reward

if done:
state = env.reset()
all rewards.append(episode reward)
episode reward = 0

if len(replay buffer) > batch size:
loss = compute td loss(batch size)
losses.append(loss.data[0])

Dmg Zhao | CMU Mnih, V., Kavukcuoglu, K., Silver, D. et al. Human-level control through deep reinforcement learning. Nature 518, 529-533 (2015).

30

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Q-network Architecture

* (s, a; 0): neural network with weights 6

e Current state: 84x84x4 stack of last 4 frames

* (Preprocessing: RGB->grayscale, avg of two
consecutive images, downsampling, and cropping)

» |Last fully connected (FC) layer has 4-d output (if 4
actions), corresponding to Q(s,, a'), O(s,, a'?),

O(s, a?), Qs a V)

Ding Zhao | CMU

FC-4 (Q-values)

FC-256

1] —

31

Two ways to compute the optimal policy

 Parameterize the policy

e Gradient ascent

>

® J(H9 @ﬂ:@) —

o0

=07

t”t‘”@

. O* = argmax,J(0, QZ@)

o U, ~ ﬂ.@i() ‘St)

Ding Zhao | CMU

« Parameterize the value function QO

 Dynamic programming

o OFi(spa) = E[r(s,a) + ymax, OF(s, 1, a,)]

. ey = Qs a) — Elr(s, a) + ymax, Op(s.q, a1l

|

. L(¢,m) = E %eggz: (¢*, 7*) = argmin,, , L(¢h,)

» With the“greedy method”, i.e., 7(a,| 5;) = max, Q (s, a)
@ of O then can influence 7.

* ¢i+1 — ¢i — GV¢L(¢) ‘¢=§bi, ¢i — Qb*, T, — ™

32

Policy Gradients

 |ssue of with DQN algorithms?

 The Q-function can be very complicated!

 Example: active safety function of a car has a very high-dimensional state
=> hard to learn exact value of every state (driving scenes) - action pair

* But the policy can be much simpler: just brake or release

 Can we learn a policy directly, e.g. finding the best policy from a collection of
policies?

* We will first learn one of the most widely used algorithms: REINFORCE

Ding Zhao | CMU 33

REINFORCE algorithm - objective function

 Mathematically, we can write:

J(0) = "TNp(T;g)[l”(T)]

= J r(t)p(t; O)dr

T

where r(7) is the reward of a trajectory 7 = (s, @p, 7, 515 - - -)

Ding Zhao | CMU

34

REINFORCE-1.0

» Expected reward: J(0) = = oy F(D)] = L r(t)p(t; O)dr

 Now let’s differentiate this: V,J(0) = L r(z) Vyp(z; 0)dr
* Intractable! Gradient of an expectation is problematic when p depends on €

e However, we can use a nice trick:

Vop(z,0) = p(t;0)
e Substitute it back:

VyJ(0) = | (1(2) Vylog p(z; 0))p(z; 0)dr = E,_\(.0)[1(7) Vglog p(z; 0)]

which can be estlmated W|th Monte Carlo sampllng

Vyp(z,0)
p(z; 0)

= p(7;0) Vylog p(r; 0)

Ding Zhao | CMU Issue we may not know p(T 9) = thop(stﬂ | S, @) ,(a,|s,) v_

35

REINFORCE-2.0: remove transition probability

 Can we compute those quantities without knowing the transition probabilities?

. We have: p(z; 0) = thop(st s, a)my(a | s)

« Thus:logp(z;0) = 2, _ logp(s,yi s, a) + log my(a, | s,)
. And when differentiating: Vylog p(z; 0) = tho Vlog my(a,|s,)
 Doesn’t depend on transition probabilities!

» Therefore when sampling one trajectory 7, we can estimate J(6) with
V,J(0) = tho r(t) Vylog my(a,| s,)

Ding Zhao | CMU

Intuition
. Gradient estimator: V,J(0) = . r(7) Vglog my(a,|s,)
* Interpretation:

o If r(7) is high, push up the probabilities of the actions seen

o If r(7) is low, push down the probabilities of the actions seen

. Issue of REINFORCE-2.0: Might seem simplistic to judge an

action with the reward of the whole trajectory. It is like a bench
player is on the court for only 1 min, but is evaluated based on
the final game result.

Mathematically, this will lead a big variance (ambiguity) in

Ding Zhao | CMU

37

REINFORCE-3.0: better credit assignment
. Gradient estimator: V,J(0) ~ ZtZO r(t) Vylog my(a,| s,)

» One idea: use rewards only after the action a, is applied
V@J(Q) ~ ZIZO (ZZ‘IZI rl") Vel()g ﬂg(at ‘ Sl‘)

* Even better: Use discount factor y to consider the delayed effects, I.e., give
higher weights to the reward just after a, is applied

V@J(H) ~ ZIZO (Zl"Zt }/t/_tl”t/) V@log ﬂ@(at ‘ St)

,’ﬁ Issue 1: what if the system has delay - we will discuss it later
| Issue 2: how to decide whether r, is high or low

Ding Zhao | CMU

38

REINFORCE-3.0: add baseline of a reward

 Problem: The raw value of the reward isn’t necessarily meaningful. ldeally,
assign a positive credit when the reward is relatively high; negative when the

reward Is relatively low.

» We need a baseline function: b(s,)

* Concretely, now estimator is:
Vol 0) = Y (X7 71y = b(s) Vglog my(a,| 5)

* A simple baseline: constant moving average of rewards experienced so far
from all trajectories

* This version is usually called “Vanilla REINFORCE”

Ding Zhao | CMU 39

Actor-Critic Algorithm: a even better baseline

 |f this action was better than the expected (averaged) value of what we should get
from that state, then we like It.

e These can be done with the values functions

. action-value function: Q*(s,,a,) = [Zt,>t y' 7.l s, at]

. state-value function: V*(s,) = [Zt,>t yt'_trt,\st]

» Intuitively, we are happy with an action at state s, if Q”*(s,, a,) — V*(s,) is large. On the
contrary, we are unhappy with an action if it’s small.

. Using this, we get the estimator: V,J(0) = Zt>0 (Q%(s,,a) — V*(s,)) Vylog my(a,| s,)

Ding Zhao | CMU 40

Actor-Critic Algorithm

* Problem: we don’t know Q and V. Can we learn them?

* Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training
both an actor (the policy) and a critic (the Q-function).

* The actor decides which action to take, and the critic tells the actor how good its
action was and how it should adjust

 Can also incorporate Q-learning tricks e.g. experience replay

 Can use data generated by previous policies - more efficient

* Define by the advantage function how much an action was better than expected

A%(s,a) = Q"(s,a) — V(s)

Ding Zhao | CMU

On-policy vs off-policy

* Policy optimization is almost always performed on-policy, which means that each
update only uses data collected while acting according to the most recent version of the
policy. The historical data collected with very old policy is not used. They can be used
with both continuous and discrete states. Using gradient, they converge to a local

minima of J(&)

* Q-learning, e.g., DQN, is almost always performed off-policy, which means that each
update can use data collected during the whole training history, regardless of what policy
the agent was choosing to explore the environment. Therefore, it is more sampling
efficient. No guarantee of convergence.

Better
- Less
Sample Efficient Sample Efficient
_ Off-policy o On-policy Evolutionary/
(1'\(;'8 ?ﬁrl] : 2?: ds) Q-learning Actor-critic Policy Gradient gradient-free
P (1 M time steps) (10 M time steps) (100 M time steps)
(Lec 8) (Lec 8)

42

Dlng Zhao ‘ CMU https://jonathan-hui.medium.com/rl-model-based-reinforcement-learning-3c2b6f0aa323

Plan for today

* Sequential decision making: MDP, POMDP

* |mitation learning
 Behavioral cloning, Dagger
 Model-free reinforcement learning
» Value-based: DQN
* Policy-based: REINFORCE

» Value-policy-based: Actor-Critic

Ding Zhao | CMU

43

Worth reading

* OpenAl spinning up for Deep RL

e https.//spinningup.openai.com/en/latest/index.html

 CS 285 UC Berkeley: Deep Reinforcement Learning

o http://rail.eecs.berkeley.edu/deepricourse/

Ding Zhao | CMU

44

https://spinningup.openai.com/en/latest/index.html
http://rail.eecs.berkeley.edu/deeprlcourse/

