
Ding Zhao

Assistant Professor

Carnegie Mellon University

2022 @ Ding Zhao

Trustworthy AI Autonomy

M2-1: Model-free Deep RL

Ding Zhao | CMU

Plan for today
• Sequential decision making: MDP, POMDP

• Imitation learning

• Behavioral cloning, Dagger

• Model-free reinforcement learning

• Value-based: DQN

• Policy-based: REINFORCE, TRPO, PPO

• Value-based+Policy-based: DDPG

2

Ding Zhao | CMU

Sequential decision making

3

Ding Zhao | CMU

States and actions

4

s0 s1 s2 s3

a0 a1 a2

p

p

pp

p p

• Need some abstraction
to start with

• States: all the info you
need to make good
decisions

• Actions: things we can
do to change states

st+1 ∼ p (⋅ |st , at)

Ding Zhao | CMU

Imitation Learning

5

s0 s1 s2 s3

a0 a1 a2

p

p

pp

p p

• Imagine you attend a tournament of
game Go and you have no clue

• But there is a master Shifu will tell
you what to do, which you just follow

Ding Zhao | CMU

Imitation Learning - tabular

6

State Action

s(1) a(1)

s(2) a(2)

:

s(n) a(n)

• IL-1.0: Look-up table

• Accumulate a big table of the state-action pair. If see , do .s(i) a(i)

s1,0 s1,1 s1,2 s1,3

a1,0 a1,1 a1,2

p

p

pp

p p

si,0 si,1 si,2 si,3

ai,0 ai,1 ai,2

p

p

pp

p p

D
is

cr
et

iz
ed

Ding Zhao | CMU

Imitation Learning - functional

7

s0 s1 s2 s3

a0 a1 a2

p

p

pp

p p

• Issue of IL-1.0:

• The table could be very long:

 (# of atoms
in the universe)

• IL-2.0:

• We can always represent

knowledge as a table or as a
function

• Decision policy

• can be a linear model
, where are pre-

defined feature functions

• can also be a neural network

2192 ≈ 10108 > 1080

at = fθ(st |𝒟 = {st, at}i)
fθ
at = θTϕ(st) ϕ()

fθ

State Action
s(1) a(1)

s(2) a(2)

:

s(n) a(n)

Ding Zhao | CMU

Imitation Learning - statistically

8

s0 s1 s2 s3

a0 a1 a2

p

p

pp

p p

• Issue of IL-2.0

• Shifu’s decisions could be multi-

modal. An averaged decision may
be meaningless.

• IL-3.0

• Count the frequency of each

pair

• When , sample all with

the weights on the corresponding
row

• IL-4.0

• For the same reason, i.e., curse of

dimension, we may use a statistical
function to approximate the table

• Decision policy

(s, a)

st = s(i) a(i)

at ∼ πθ(⋅ |st , 𝒟 = {st, at}i)

a(1) ... a(m)

s(1) 4 ... 50

s(2) 10 ... 2

:

s(n) 0 ... 1

Ding Zhao | CMU

Imitation Learning/Behavioral Cloning

9

• Divide data into training
and testing sets

• Take collected “data” as
the expert

• Train a model with a
loss function

• Make decision

at ∼ πθ(⋅ |st , 𝒟 = {st, at}i)

Modeling

min
θ

∑N
i L(ai, πθ(st))

Action

 at ∼ πθ(⋅ |st)

Sensing
𝒟 = {st, at}i

Does it work?

Yes!training set

testing set

Ding Zhao | CMU

Case study 1: Nvidia Autonomous Car (2016)

10https://developer.nvidia.com/blog/deep-learning-self-driving-cars/

https://www.youtube.com/watch?v=qhUvQiKec2U

Ding Zhao | CMU

Case study 1: Nvidia Autonomous Car (2016)

11https://developer.nvidia.com/blog/deep-learning-self-driving-cars/

Ding Zhao | CMU

Case study 1: Nvidia Autonomous Car (2016)

12https://developer.nvidia.com/blog/deep-learning-self-driving-cars/

Ding Zhao | CMU

Case study 2: AlphaGo (2016)

13

SL: Supervised learning

Silver, D., Huang, A., Maddison, C. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016).

Ding Zhao | CMU

Imitation Learning - DAgger

14

s0 s1 s2 s3

a0 a1 a2

p

p

pp

p p

• Issue of IL-4.0

• Does it always work - NO

• Lack of enough data to fully

train

• IL-5.0: Data Aggregation (DAgger)

• Train with labelled

data

• Try it out and get a new data

set

• Ask Shifu to relabel them:

• Retrain

πθ(at |st)

πθ(0)(at |st)
𝒟(0) = {st, at}1:N0

𝒟̃(1) = {st, ãt}N0+1:N1

𝒟(1) ← 𝒟̃(1)

πθ(1) ← 𝒟(0) ∪ 𝒟(1)

a(1) ... a(m)

s(1) 4 ... 50

s(2) 10 ... 2

:

s(n) 0 ... 1

𝒟(0) → πθ(0)

→ 𝒟̃(1) → 𝒟(1)

→ 𝒟(0) ∪ 𝒟(1) → πθ(1)

πππ

Ding Zhao | CMU

Imitation Learning - Issues

15

s0 s1 s2 s3

a0 a1 a2

p

p

pp

p p

𝒟(0) → πθ(0)

→ 𝒟̃(1) → 𝒟(1)

→ 𝒟(0) ∪ 𝒟(1) → πθ(1)

Drunk

πππ

• Issue of IL-5.0

• Shifu may make mistakes, e.g.,

normal human drivers, could be
imperfect, e.g. road raging,
panic in a collision, sleepy

• Too expensive

• 3,000 miles to train Nvidia

autonomous vehicles

• 20,000,000 miles of testing

on the public road by Waymo

• Some experiments are safety

critical, e.g. robotics, healthcare

Ding Zhao | CMU

Imitation Learning - Issues

16

20 million miles and counting…

“Ford Engineers Are Falling Asleep While
Monitoring Self-Driving Cars”, The Drive, 2017

“Self-driving Uber kills Arizona woman in first fatal crash involving pedestrian”, Guardian, 2018

“Uber's self-driving operator charged over fatal crash”, BBC, 2018

Forbes, January 2020

https://www.youtube.com/watch?v=RASBcc4yOOo

Ding Zhao | CMU

Imitation Learning - Issues

17

s0 s1 s2 s3

a0 a1 a2

p

p

pp

p p

• Issue of IL-5.0

• Shifu may make mistakes, e.g., normal

human drivers, could be imperfect, e.g.
road raging, panic in a collision, sleepy

• Too expensive

• 3,000 miles to train Nvidia

autonomous vehicles

• 20,000,000 miles of testing on the

public road by Waymo

• Some experiments are safety critical,

e.g. robotics, healthcare
𝒟(0) → πθ(0)

→ 𝒟̃(1) → 𝒟(1)

→ 𝒟(0) ∪ 𝒟(1) → πθ(1)

Drunk

πππ

• Instead of imitating, we may just need
to know the goal and find better
methods with trial-and-error -
Reinforcement learning

Ding Zhao | CMU

Reinforcement learning

18

Modeling

min
θ

∑N
i L(ai, πθ(st))

Action

 at ∼ πθ(⋅ |st)

Sensing
𝒟 = {st, at}i

Environment

Ding Zhao | CMU

Plan for today
• Sequential decision making: MDP, POMDP

• Imitation learning

• Behavioral cloning, Dagger

• Model-free reinforcement learning

• Value-based: DQN

• Policy-based: REINFORCE, TRPO, PPO

• Value-based+Policy-based: DDPG

19

Ding Zhao | CMU

Reinforcement Learning - Reward function

20

s0 s1 s2 s3

r0 r1 r2 r3

a0 a1 a2

p

p

pp

p p

r r r

rrr

r

πππ
• Instead of asking for

demos, we only request a
single digit number to
indicate the level of
happiness - reward.

rt

st+1 ∼ p (⋅ |st , at)
at ∼ π (⋅ |st)
rt ∼ r (⋅ |st , at)Markov Decision Process

The most widely used RL structure is MDP.

Ding Zhao | CMU

Markov Decision Process
• Mathematical formulation of the RL problem

• Markov property: Current state completely  

characterizes the state of the world

• Defined by:

• : set of possible states

• : set of possible actions

• : reward function

• : dynamics function

• A trajectory (rollout) is a sequence of states and actions  
 is randomly sampled from the start-state distribution

(𝒮, 𝒜, r, p)
𝒮
𝒜
r
p

τ = (s0, a0, s1, a1, . . .)
s0 s0 ∼ ρ0(⋅)

21

st+1 ∼ p (⋅ |st , at)
at ∼ π (⋅ |st)
rt ∼ r (⋅ |st , at)

Ding Zhao | CMU

Return
• In a sequential decision making, the accumulated episodic is called return

• There are two common ways to define return. In the practice, people may mix
these two up

• Finite-horizon undiscounted return 

• Infinite-horizon discounted return 
  
 : discount factor

• Goal of MDP: given , , or , we want  

R(τ) = ∑T
t=0 rt

R(τ) = ∑∞
t=0 γtrt

γ

(𝒮, 𝒜, r, p) ρ0(⋅) T γ

π* = arg maxπ Eτ∼π [R (τ)]
22

Ding Zhao | CMU

Sequential decision making

23
What are the , , , ?(𝒮, 𝒜, r, p) ρ0(⋅) R(τ) π*

Ding Zhao | CMU

Q-value function

24

• For sequential decision making, we care the total reward in the sequence

• Q-value function with infinite-horizon definition  

• Calculate backward:  
 , , , ...

• Optimal policy optimize , or Bellman Equation (dynamic programming)

Qπ
t = Qπ(st, at) = 𝔼[R(τ) |st, at] = 𝔼[∑∞

k=0 γkr(st+k, at+k) |st, at]

Q3 = r(s3) Q2 = r(s2, a2) + γQ3 Q1 = r(s1, a1) + γQ2

Qπ(st, at) = 𝔼at+1∼π[r(st, at) + γQπ(st+1, at+1)]
π* Qπ(st, at)

Qπ*(st, at) = 𝔼[r(st, at) + γ maxat+1
Qπ*(st+1, at+1)]

“Bellman backup” or just “backup” or “target" comes up quite frequently in the RL literature, which is the
right-hand side of the Bellman equation: the reward-plus-next-value.

Ding Zhao | CMU

Two ways to compute the optimal policy
• Parameterize the policy

• Gradient ascent

•

•

• ,

•

• Parameterize the value function

• Dynamic programming

•

•

• ,

• With the“greedy method”, i.e.,  
 of then can influence .

• , ,

J(θ, 𝒟πθ
) = 𝔼 [∑∞

t=0 γtrt |πθ]
θ* = arg maxθ J(θ, 𝒟πθ

)

θi+1 = θi + α∇θJ(θ) |θ=θi
θi → θ*

at ∼ πθi
(⋅ |st)

Q

Qπ*
ϕ*(st, at) = 𝔼[r(st, at) + γ maxat+1

Qπ*
ϕ*(st+1, at+1)]

eπ
ϕ = Qπ

ϕ(st, at) − 𝔼[r(st, at) + γ maxat+1
Qπ

ϕ(st+1, at+1)]

L(ϕ, π) = 𝔼 [1
2 eπ

ϕ
2] (ϕ*, π*) = arg minϕ,π L(ϕ, π)

π(at |st) = maxa Qϕ(st, a)
ϕ Q π

ϕi+1 = ϕi − α∇ϕL(ϕ) |ϕ=ϕi
ϕi → ϕ* πi → π*

25

Ding Zhao | CMU

DQN-1.0 algorithm
One point iteration

1. Take an action using greedy method 
  

and observe

2. Calculate Bellman backup 

3. Update Q function 
  

where is the learning rate 

at = maxa Qϕi
(st, a)

(st, at, st+1, ri)

yt = r(st, at) + γ maxat+1
Qϕi

(st+1, at+1)

ϕ ← ϕ − α∑t (∇ϕQϕ(st, at)) (Qϕ(st, at) − yt)
α

26

Issue of DQN-1.0, the optimization may be
trapped in a vicious circle:

bad policy -> bad training data -> train a
even worse policy (a core problem of RL)

Different from IL, training data here is not
i.i.d.:

• Training data are decided by a policy

strictly decided by previous training data

• pairs in a trajectories are

dependent

Two ways to cut the chain:

=> randomize policy: -greedy 
=> randomize data: experience replay 

(st, at)

ε

randomize policy: -greedyε

randomize data:
experience replay

Ding Zhao | CMU

DQN-2.0 algorithm
Randomize actions

1. Take an action using -greedy method:

 with probability ,
otherwise, choose a random action 
and observe

2. Calculate Bellman backup 

3. Update Q function 
  

where is the learning rate 

ε
at = maxa Qϕi

(st, a) 1 − ε

(st, at, st+1, ri)

yt = r(st, at) + γ maxat+1
Qϕi

(st+1, at+1)

ϕ ← ϕ − α∑t (∇ϕQϕ(st, at)) (Qϕ(st, at) − yt)
α

27

Issue of DQN-1.0, the optimization may be
trapped in a vicious circle:

bad policy -> bad training data -> train a
even worse policy (a core problem of RL)

Different from IL, training data here is not
i.i.d.:

• Training data are decided by a policy

strictly decided by previous training data

• pairs in a trajectories are

dependent

Two ways to cut the chain:

=> randomize policy: -greedy 
=> randomize data: experience replay 

(st, at)

ε

randomize policy: -greedyε

Ding Zhao | CMU

DQN-3.0 algorithm
Randomize actions and training data

1. Take the -greedy method:  

 with probability , otherwise, choose a
random action 
observe a dataset and add it to

1. Randomly sample a mini batch from

2. Calculate Bellman backup for this batch 

1. Iteratively calculate starting from  
 

3. Update Q function:  
Way 1 direction update:  
Way 2 moving average: , e.g.  

ε
at = maxa Qϕi

(st, a) 1 − ε

{(st, at, st+1, rt)} 𝒟

𝒟

yt = r(st, at) + γ maxat+1
Qϕi

(st+1, at+1)

ϕ ϕi
ϕ ← ϕ − α∑t (∇ϕQϕ(st, at)) (Qϕ(st, at) − yt)

ϕi+1 = ϕ
ϕi+1 = ρϕi + (1 − ρ)ϕ ρ = 0.999

28

Issue of DQN-1.0, the optimization may be
trapped in a vicious circle:

bad policy -> bad training data -> train a
even worse policy (a core problem of RL)

Different from IL, training data here is not
i.i.d.:

• Training data are decided by a policy

strictly decided by previous training data

• pairs in a trajectories are

dependent

Two ways to cut the chain:

=> randomize policy: -greedy 
=> randomize data: experience replay 

(st, at)

ε

randomize policy: -greedyε

randomize data:
experience replay

Also called low pass filter/Polyak averaging in literature

Ding Zhao | CMU

`

29Mnih, V., Kavukcuoglu, K., Silver, D. et al. Human-level control through
deep reinforcement learning. Nature 518, 529–533 (2015).

Does it work?

Most of the time!

Ding Zhao | CMU

Code and performance

30Mnih, V., Kavukcuoglu, K., Silver, D. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Ding Zhao | CMU

Q-network Architecture
• : neural network with weights

• Current state: 84x84x4 stack of last 4 frames

• (Preprocessing: RGB->grayscale, avg of two
consecutive images, downsampling, and cropping)

• Last fully connected (FC) layer has 4-d output (if 4
actions), corresponding to , ,

,

Q(s, a; θ) θ

Q(st, a(1)
t) Q(st, a(2)

t)
Q(st, a(3)

t) Q(st, a(4)
t)

31

Ding Zhao | CMU

Two ways to compute the optimal policy
• Parameterize the policy

• Gradient ascent

•

•

• ,

•

• Parameterize the value function

• Dynamic programming

•

•

• ,

• With the“greedy method”, i.e.,  
 of then can influence .

• , ,

J(θ, 𝒟πθ
) = 𝔼 [∑∞

t=0 γtrt |πθ]
θ* = arg maxθ J(θ, 𝒟πθ

)

θi+1 = θi + α∇θJ(θ) |θ=θi
θi → θ*

at ∼ πθi
(⋅ |st)

Q

Qπ*
ϕ*(st, at) = 𝔼[r(st, at) + γ maxat+1

Qπ*
ϕ*(st+1, at+1)]

eπ
ϕ = Qπ

ϕ(st, at) − 𝔼[r(st, at) + γ maxat+1
Qπ

ϕ(st+1, at+1)]

L(ϕ, π) = 𝔼 [1
2 eπ

ϕ
2] (ϕ*, π*) = arg minϕ,π L(ϕ, π)

π(at |st) = maxa Qϕ(st, a)
ϕ Q π

ϕi+1 = ϕi − α∇ϕL(ϕ) |ϕ=ϕi
ϕi → ϕ* πi → π*

32

Ding Zhao | CMU

Policy Gradients
• Issue of with DQN algorithms?

• The Q-function can be very complicated!

• Example: active safety function of a car has a very high-dimensional state
=> hard to learn exact value of every state (driving scenes) - action pair

• But the policy can be much simpler: just brake or release

• Can we learn a policy directly, e.g. finding the best policy from a collection of
policies?

• We will first learn one of the most widely used algorithms: REINFORCE

33

Ding Zhao | CMU

REINFORCE algorithm - objective function
• Mathematically, we can write:

  

 
 

where is the reward of a trajectory

J(θ) = 𝔼τ∼p(τ;θ)[r(τ)]

= ∫τ
r(τ)p(τ; θ)dτ

r(τ) τ = (s0, a0, r0, s1, …)

34

Ding Zhao | CMU

REINFORCE-1.0
• Expected reward:

• Now let’s differentiate this:

• Intractable! Gradient of an expectation is problematic when depends on

• However, we can use a nice trick:

• Substitute it back:

which can be estimated with Monte Carlo sampling

J(θ) = 𝔼τ∼p(τ;θ)[r(τ)] = ∫
τ
r(τ)p(τ; θ)dτ

∇θJ(θ) = ∫
τ
r(τ)∇θ p(τ; θ)dτ

p θ

∇θ p(τ; θ) = p(τ; θ)
∇θ p(τ; θ)

p(τ; θ) = p(τ; θ)∇θlog p(τ; θ)

∇θJ(θ) = ∫
τ
(r(τ)∇θlog p(τ; θ))p(τ; θ)dτ = 𝔼τ∼p(τ;θ)[r(τ)∇θlog p(τ; θ)]

35p(τ; θ) = ∏t≥0 p(st+1 |st, at)πθ(at |st)Issue: we may not know

Ding Zhao | CMU

REINFORCE-2.0: remove transition probability
• Can we compute those quantities without knowing the transition probabilities?

• We have:

• Thus:

• And when differentiating:

• Doesn’t depend on transition probabilities!

• Therefore when sampling one trajectory , we can estimate with

p(τ; θ) = ∏t≥0 p(st+1 |st, at)πθ(at |st)

log p(τ; θ) = ∑t≥0 log p(st+1 |st, at) + log πθ(at |st)

∇θlog p(τ; θ) = ∑t≥0 ∇θlog πθ(at |st)

τ J(θ)

∇θJ(θ) ≈ ∑t≥0 r(τ)∇θlog πθ(at |st)

36

Ding Zhao | CMU

Intuition
• Gradient estimator:

• Interpretation:

• If is high, push up the probabilities of the actions seen

• If is low, push down the probabilities of the actions seen

∇θJ(θ) ≈ ∑t≥0 r(τ)∇θlog πθ(at |st)

r(τ)

r(τ)

37

Issue of REINFORCE-2.0: Might seem simplistic to judge an
action with the reward of the whole trajectory. It is like a bench
player is on the court for only 1 min, but is evaluated based on
the final game result.  
 
Mathematically, this will lead a big variance (ambiguity) in
evaluation and further decision.

Ding Zhao | CMU

REINFORCE-3.0: better credit assignment
• Gradient estimator:

• One idea: use rewards only after the action is applied

• Even better: Use discount factor to consider the delayed effects, i.e., give
higher weights to the reward just after is applied

∇θJ(θ) ≈ ∑t≥0 r(τ)∇θlog πθ(at |st)

at

∇θJ(θ) ≈ ∑t≥0 (∑t′￼≥t rt′￼
)∇θlog πθ(at |st)

γ
at

∇θJ(θ) ≈ ∑t≥0 (∑t′￼≥t γt′￼−trt′￼
)∇θlog πθ(at |st)

38

Issue 1: what if the system has delay - we will discuss it later 
Issue 2: how to decide whether is high or low rt′￼

Ding Zhao | CMU

REINFORCE-3.0: add baseline of a reward
• Problem: The raw value of the reward isn’t necessarily meaningful. Ideally,

assign a positive credit when the reward is relatively high; negative when the
reward is relatively low.

• We need a baseline function:

• Concretely, now estimator is:

• A simple baseline: constant moving average of rewards experienced so far
from all trajectories

• This version is usually called “Vanilla REINFORCE”

b(st)

∇θJ(θ) ≈ ∑t≥0 (∑t′￼≥t γt′￼−trt′￼
− b(st))∇θlog πθ(at |st)

39

Ding Zhao | CMU

Actor-Critic Algorithm: a even better baseline
• If this action was better than the expected (averaged) value of what we should get

from that state, then we like it.

• These can be done with the values functions

• action-value function:

• state-value function:

• Intuitively, we are happy with an action at state if is large. On the
contrary, we are unhappy with an action if it’s small.

• Using this, we get the estimator:

Qπ(st, at) = 𝔼π [∑t′￼≥t γt′￼−trt′￼
|st, at]

Vπ(st) = 𝔼π [∑t′￼≥t γt′￼−trt′￼
|st]

st Qπ(st, at) − Vπ(st)

∇θJ(θ) ≈ ∑t≥0 (Qπ(st, at) − Vπ(st))∇θlog πθ(at |st)

40

Ding Zhao | CMU

Actor-Critic Algorithm
• Problem: we don’t know and . Can we learn them?

• Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training
both an actor (the policy) and a critic (the Q-function).

• The actor decides which action to take, and the critic tells the actor how good its
action was and how it should adjust

• Can also incorporate Q-learning tricks e.g. experience replay

• Can use data generated by previous policies - more efficient

• Define by the advantage function how much an action was better than expected

Q V

Aπ(s, a) = Qπ(s, a) − Vπ(s)

41

Ding Zhao | CMU

On-policy vs off-policy
• Policy optimization is almost always performed on-policy, which means that each

update only uses data collected while acting according to the most recent version of the
policy. The historical data collected with very old policy is not used. They can be used
with both continuous and discrete states. Using gradient, they converge to a local
minima of

• Q-learning, e.g., DQN, is almost always performed off-policy, which means that each
update can use data collected during the whole training history, regardless of what policy
the agent was choosing to explore the environment. Therefore, it is more sampling
efficient. No guarantee of convergence.

J(θ)

42https://jonathan-hui.medium.com/rl-model-based-reinforcement-learning-3c2b6f0aa323

(Lec 8) (Lec 8)

Ding Zhao | CMU

Plan for today
• Sequential decision making: MDP, POMDP

• Imitation learning

• Behavioral cloning, Dagger

• Model-free reinforcement learning

• Value-based: DQN

• Policy-based: REINFORCE

• Value-policy-based: Actor-Critic

43

Ding Zhao | CMU

Worth reading
• OpenAI spinning up for Deep RL

• https://spinningup.openai.com/en/latest/index.html

• CS 285 UC Berkeley: Deep Reinforcement Learning

• http://rail.eecs.berkeley.edu/deeprlcourse/

44

https://spinningup.openai.com/en/latest/index.html
http://rail.eecs.berkeley.edu/deeprlcourse/

